PREDICTABLE

G N S

Where EIectronlcs and Entrepreneurshlp Intersect

Introduction to the STM32CubelDE
for STM32 Microcontrollers

DOWNLOAD PRINTER-FRIENDLY VERSION OF THIS PDF DOCUMENT

http://thehardwareacademy.com/downloads/STM32CubeIDE_print.pdf
https://predictabledesigns.com/

This article is about using the STM32CubelDE to develop applications for STM32
MCU’s. Why develop an application using the STM32Cube IDE, and what are the
advantages and disadvantages of using this method?

The STM32CubelDE is a complete development system to develop code for
almost all STM32-based MCU’s from ST Microelectronics. As the name suggests, it
is an Integrated Development Environment (IDE) that essentially includes the
STMCubeMx GUI HW configuration tool, and a full compiler.

It can be used as a development platform for all STM32 MCU'’s, whether itis on a
development board such as from one of ST’s Nucleo or Discovery family, or a
custom-designed board.

Another advantage is that it allows for much better control of the MCU.
Compared to Arduino, the user is no longer limited to just what functionalities
Arduino provides, and what MCU’s it has been ported to.

However, this flexibility comes at a price.

For one thing, using the STM32CubelDE locks the user into ST’s ecosystem. In
other words, it is geared toward the STM32 family of MCU'’s.

ST does have a very large selection of STM32 MCU’s though, and this approach
means that once an application is written, it is relatively easy to port that to
another, more powerful, member of the STM32 family, should the need arise.

Another is the development code has to be in C/C++. In other words, some of the
higher level HW abstractions from Arduino, for instance, are not available.

It is not as simple as calling Serial.begin or DigitalWrite functions as in Arduino.
The actual UART, or GPIO port, has to be properly initialized first.

This is where the GUI configuration tool helps. Still, this also means that the user
has to be quite aware of the MCU internal architecture and the actual HW design
that this MCU is part of.

As will be seen later, knowledge of the appropriate ST's HAL APl also helps. This
Hardware Abstraction Layer Application Programming Interface can greatly ease
the transition from, again, Arduino to using STM32CubelDE.

For the purpose of this article, an STM32 BluePill board will be used as the base
HW. This is readily available, and serves the purpose of an introduction to
STM32CubelDE.

Other than the actual BluePill, a device programmer will also be required. For this,
one of the STLInk V2 clones will be used.

Figure 1 shows an example of both the BluePill and the ST Link V2 clone. Since the
intent of this article is to introduce the STM32CubelDE, and not code
development, the application example is the simple “Blinky”.

S5 A A3 A2 Al noClscncstB ‘

» o -er(;("[’ua - QQQQQO 04 =

31281’38148 ABASAIDATAI2A1SB3B4 B85 B6 B7B8 BS SV G 3.3

Figure 1 — Example of a BLuePill and ST Link V2 device programmer clone

Configuring the Hardware

The first thing to do is to install STM32CubelDE. This can be downloaded here.
Note that registration is required.

After installation, you can startup the application. Select from File-New-STM32 as
shown in Figure 2. After a little while, the device selection screen shown in Figure
3 will appear.

Here is where knowledge of the actual HW is required. Figure 4 shows the
schematic diagram of the STM32duino BluePill module. As can be seen, the MCU
isa STM32F103C8T6. So, this is what is selected.

......

nnnnnnnnnnnnnnnnnnnn

uuuuuu

Figure 2 —initial screen of STM32Cube IDE showing selection drop-downs for a
new project

https://www.st.com/en/development-tools/stm32cubeide.html

[sTha2 Project
Target Selection
Select STMEZ target

MCUMPU Selactor

Part Number Seaech

Package

Cther

Price From 0.01a 9.54

0o

10 Fram 1110 176

4

Eepram From 0 to 16384 (Bytes
a

Flash From 010 2048 (kBytes)
a

Ram From 2 to 1184 (kBytes)

2

Freq. From 24 to 800 (MHz)

Peripheral
ADC 12-bit
ADC 16-bt

D
[PR—

16384

1184

800

MCUs/MPUs List: 16:

I
STM32FI30CE
STMI2FI30CE
STM32F030CC
STM32FO30F4
STMIZFOI0KE
STMI2FO30RE
STM22FO30RC
STMIRFOMCA
STMIFOIICE
STMI2FIIIES
STMI2FO3IFL
STM32F031FE
STM32F03164
STMENIRR

STMI2FO30CETx
STM32FO30CETx
STM32FO30CCTx
STMIZFO30F4Px
STM3IZFO30KETx
STM32FO30RETx
STM32FO30RCTX
STMI2FO31C4Tx
STMIZFOI1CETS
STMIZFOITERYX
STMIZFO31F4Px
STMI2FO31FEPx
STM32FO31GIUx

* 120 MHz

* Down to 512 KB Flash
+ 320 KB RAM

* Down to 48 pins

| enensus L ierceiow s] ows]
Actme 0597
Active 072
Actme "
oy
0518
0754
11
097
1013
07
om
0785
or UraFPIRS

256 kBytes
16 kBytes
32 kBytes
64 kiytes
256 kBytes
16 kBytes
32 kBytes
32 kBytes
16 kBytes
32 kBytes

| e 1 o]

1 kBytes 3 18 MHz
8 kBytes E) 18 MHz
32 kBytes £ 28 MHz
4 KBytes 15 48 MHz
4 kBytes z 43 MHz
4 kBytes 55 48 MHz
32 kBytes 51 48 MHz
4 kBytes E) 48 Mz
4 KBytes 3 48 MHz
4 kBytes 2 481z
4 KBytes 18 48 MHz
4 KBytes 18 28 MHz
4 KBytes 2 48 MHz
A VBtas n e

< Back Hext > Finsh

Figure 3 — Device selection screen

» 5V VCCHv3
{53
e ul
L vIN vour
w2 "
. BP
) cs|er | cis A 106.0805 T04,0603
VBAT Tz 6 VCCIV3 2230603 d
z ,
PCI3 VDD 2 55— GND tososos L[] 2 GND
C VSS 2 L
C1a Bele WIO =k L
1S SWIO AR = 104,0603 RT9193-33 = =
s = PAI2 N GND GND GND
YSCIN E AT ALL
OSCoUT 6 PAL0
RESET 7] 9SCOUT sTM3aF103C8T6 PAL0 A sV
! NRST PA9
GND 5 9P/
D SSA PAS
VoOIW3 9 3 3 u3 =5
PA 00| PBIS 57 PBIs bus
: PAO PBI4 2 Vbus f—rRuS 20R,0603 :
PA 10 - 6 3 D- — PALL
= 5 PAL E PBI3 o 3 D- o+ =1 SAD
A2 12 Veas <) pBI2 |2 2 D+ [T}
2 - ID —= RIl
Loc—"1a! =< ES % % 10
mgnena-gSond G 20R.0603 <
2¥2Es888=5842 7k,0603
_________ B USB-mrico =
; GND
st it K e o 1= b e 3V
i VCC3V3
s =I2l=lelz VCC3V3
olzlelelclal=E IR - 3 o1
KEEEEEEE RI i
3 S 3 L GND
i BoOTy R3 5 R4 BOOTI ’ 510R,0603
100K,0603 56 100K.0603 VCC3V3 ;‘)';'D
Header 3X2 AR RS
{ _—_] N = PCI3
= B4 S10R0603

P2
VCC3V3 VCC3V3 VCC3V3

; JOCIVA /CC3V3
SWDIO 'CC3V3 VCC3V3 VCC3V3 VCC3V3

Cl
C3 C.

SWDCLK
4
104,0603 104,0603

pal d & il
IZRIEEEEE

SWD

| VBAT
!
3
4
5
6
4
8
9
0
1
%
3
: 0
o]
6
7 ST
3 C
9 (})
0
B
2
S
=3
g
=
g0
2 =}
g
=
=
g
3
b1

SzDa23IL=E=EZR

SWD =

P3

Header 20 9
PCl4
il }—I—
) e o4 = =
z b B 4 1 1l 4 20p,0603 s
s 7 S| 3
] 32.768K
< C12 3
= PC1S
e T T T R 20p,0603 20p,0603
P4
Header 20

Figure 4 — STM32Duino BluePill schematic

The next screen requests a name for the project, and also some information
about the type of project. In this case, as shown in Figure 5, the project will be an
executable called Blink, and it will be done using C.

After a while, and answering “yes” to the pop-up about STMCube, the screen
shown in Figure 6 will appear. This is the device pinout view screen. It allows the
user to choose the function of the MCU pins.

The pins of the STM32 MCU, like most other MCU’s, can be configured for many
uses such as GPIO, ADC, Timer and others. Here again, knowledge of the actual
HW is needed to properly configure the pins for their intended use in the HW.

First, select the proper clock source for the MCU. By default, the MCU uses its
internal RC oscillator. However, in the STM32duino BluePill, the clock is actually
an external crystal.

Again referring to figure 4, the BluePill external crystal frequency is 8 MHz. In
keeping with the most commonly used clock frequency for the BluePill, the
internal clock frequency will be set to 72 MHz.

First go to the Pinout & Configuration tab, and select RCC; this stands for Reset
and Clock Control. Now in the panels that appear, choose the High Speed Clock
(HSE) to be “Crystal Ceramic Resonator”.

Next, select which pins the Crystal is going to be attached to. Even though the
schematics in figure 4 label these pins as OSCIN and OSCOUT, they are, in fact,
PDO_OSC_IN and PD1_OSC_OUT. Just left-click on PDO and PD1, and select their
functions to be OSC_IN and OSC_OUT respectively. This completes the setting of
the pins for external crystal usage.

The next part is to set up the clock frequency. Click on the Clock Configuration
tab, and a screen like that shown in figure 8 will appear. Values are entered
directly in the various boxes.

Since the external crystal clock is 8MHz, just make sure that this is set to 8. Next
select HSE, or High-Speed External, in the PLL source MUX. Then, set the PLL MUL
to 9.

This essentially multiplies the input clock by 9, giving it a value of 72MHz. Now,
set the System Clock Mux to PLLCLK. That is, tell the MCU that its clock source will
be the output of the PLL.

There are many other options. For example, the CSS can be enabled. CSS stands
for Clock Security System. If enabled, then a non-maskable Interrupt is generated
if the external clock fails. Otherwise, the MCU switches to use its HSI, or High
Speed Internal, clock. In this example, this will not be enabled. The confusing part
is the box will show “Enable CSS”, but it is actually not enabled.

If enabled, the box will show “CSS Enabled”. Finally, the APB1, or Advanced
Peripheral Clock 1, prescaler should be set to /2 since the maximum APB1 clock
frequency is 36 MHz. This is the clock source for the UART, for example. The other
options allow the peripherals to be clocked at frequencies other than core clock.

This can be used to reduce power consumption, for instance. However, in this
case, the rest will be left as is. Figure 8 actually shows the proper values as just
described.

Since the application requires blinking the built-in LED, the pin driving the internal
LED needs to be set up now. Looking at the schematic diagram of figure 4 once
again, it is seen that the internal LED is driven by PC13. So, this pin has to be set to
be a GPIO output pin.

Go back and click on the Pinout & Configuration tab. On the pinout diagram, left
click on the PC13 pin, and select GPIO_Output. Right click on the same pin, and
select “Enter User Label”. Enter a name such as “LED” for this pin.

Now, select System View on the main window, and select GPIO. The screen will
look like that shown in Figure 9. In the GPIO Mode and Configuration window,
various settings for the GPIO pin can be selected.

As shown in Figure 9, the initial output is Low, the mode is push-pull and there is
no pull-up or pull-down. That should be fine for this application, but just be aware
that these settings can be changed to suit the application. This completes the
required settings for this application.

@ [B0 stz projea

v MUY - .
o 1 |
o

Projet
Project Mare: [Bini]

[Use default lecation

Options

Torgeted Language
@®C Ot

Targeted Binary Type
® Executable () Static Library

Tergeted Preject Type
® STM32Cube O Empty

<tk || Hety Cancel

i Build Analyzer -t
Ditems
Descrption Rescuce Fath Location Type Wermory Regons iarmory Dol
Region Startaddress Endoddress Sime Free Used Usage (%)

H £ Type here to search

Figure 5 — Project information screen

[workspace_1.3.0 - Dewice Configuration Tool - STM32CubelDE
Fie Edt Mavigste Sewch Proect Fun Window Help

- a x

B O~ & @it 0 Ui F il flr o [Cukrccess 1) g5 | 2

‘s | sinkioc =0
-

Additional Software

& Pinout view

Analog >

Timers

Connetiity

Computing >

Wigdieware

STM32F103C8Tx
- - Q -

B Console

“@-fd-=0
No consoles ta display at this time.

[Sunday, Apri 25, 2020

H P Type here to search

Figure 6 — Pinout view of the STM32F103C8Tx MCU

[workspace 13- Device Configurstion Tool - STM32CubelDE - 8 x
Fie Edit Navigste Sesch Project Fan Windaw Help

B "HRI S~ {-Bidit-0-Q~-if-ifi~fi~-0e- Quick Access |} g5 | B3 |E)
& | Testiee 3z =n

System view

4
b
System Core v v
R Low Speed Clock (LSE) [Disable <
DA [Master Clock Output
oG
Analog > SYS_ITME-SADIO
Timers. >
Comecthity ,’
Computing >
i Resel Configuration STM32F103C8Tx
icdisvare v
. System Parameters
V0D voltage (V) 13v
Prefetch Buffer Enabled
+ RCC Parameters
8! Catratian Valus 1
HSE Startup Timout Value (me) 100
LSE Startup Timout Value (ms) 5000
= . Q -
B Console “@-f8-r=0

No consoles ta display at this time.

= [CR—

Figure 7 — Pinout & Configuration tab for selecting external clock source

[workspace_1.3.0 - Device Configuration Tool - STM32CubelDE

Fie Edt Navigate Seach Project Run Window

R T R

Help

Clack Configuration

© Console
No consoles to display at this time.

- T

————————————— & [rerum

PLL Source thar

HSE |-oo /1 -
- Je .
ole

1681 Timar clocks (M

;

[T workspace_1.3.0 - Device Configuration Tool - STM32CubeiDE

Fie Bt Souce Refector Nevgate Sewch Project Fum Window Help
. BrR RSP ErE GO IS P .
£, Project Explres [menc (B manh [smi2ie helconth

=0 ik

« [Bink
4 Einaries
5 Includes
v @ Core
v i Ine
) main
[stmd2x_hal_confh
[stm3fto ith
& e
(= Sterup
5 Drivers
@ Debug
£ Biink.joc
W STM3ZFIOICAT FLASHII
D Test

Analog
Timars
Cannactity
Computing

Middleware

[£] Probiems 53
Ditems

Descripticn

H P Type here to search

Pinout & Canfiguration

PC13-TAMPER-ATC Configuration

GPIO output |

GPIO made

GPIO PubupPull-down

Maximum output sper

Resource. Path

Signal on Pinf IO ovtp | GPIO ma [GPI Pul-..| i | Ussr Labat | Hociiza |
Low Output Pus__ No pullup LED

) Show only Modified Pins

High

STM32F103CRTx
LaFPas

Output Push Pu

up and no pull-down

hgh
LED
T S0 | RuidAnalye
Blink.elf - /Blink/Dabug - May 1, 2020 5:18:48 AM
Lecation e
ki Memory Regicns Memaory Details

Region Sttaddress Endaddress Size Free Used
R G000 DU 20KB 1845 K8 15588
s @000 DO GHKE 255K 44508

T =p

Figure 9 — System view screen

Code

So, what does all the configuration in the previous section do? It allows the
automatic generation of initialization code for setting up the clock and GPIO.

Just go the “Project” tab, and click on “Generate Code”. A pop-up progress
window will appear, and after it is done, navigate to the “Project Explorer” tab.

From there go to “core”, then to “Src”, and click on main.c. This will open up the
main.c file in the main window. As can be seen in figure 10, lots of code has been
generated already.

Scrolling down this window to the int main(void) function, it is seen that it already
calls three functions: HAL Init(), SystemClock_Config(), and MX_GPIO_Init(). The
actual functions are defined further down in main.c. These are the HW setup
functions that were automatically generated based on the user configurations
entered previously.

Also note that there are various sections with comments that start with
something like /* USER CODE BEGIN WHILE */, and /* USER CODE END WHILE */. The space
between any comments that are bracketed by comments that start with “USER
CODE ...” is where the user is expected to enter the application-specific code. This
is shown in figure 11.

In this article, some code will be entered in the sections defined in the previous
paragraph. Before getting to that, open the main.h file, and locate this section:

#tdefine LED_Pin GPIO PIN_13
#define LED_GPIO_Port GPIOC
/* USER CODE BEGIN Private defines */

/* USER CODE END Private defines */

Using the “LED” label provided earlier, the code generator has already defined
some names to GPIO_PIN_13 and the port it is on. In this case, LED Pin is
GPIO_PIN_13, and LED_GPIO_Port is GPIOC.

Go back to main.c, and insert the following two lines between /* USER CODE BEGIN
WHILE */, and /* USER CODE END WHILE */, as shown in figure 12.

HAL Delay(500);
HAL_GPIO TogglePin(LED_GPIO Port, LED Pin);

The first line is a delay of 500ms, and the second line simply toggles the LED pin as
defined earlier. Since this is in the main loop, it is repeated forever, and thus the
LED blinks forever.

The more important part of the code is the actual functions that were called in
the main loop. These functions are part of the HAL API that is already included in
the application that was just developed.

Understanding this HAL API, and knowing what is available, and how to call the
different HAL functions goes a long way toward making code development for
STM32 MCU'’s easier and faster. Here is a link to the HAL API.

As a side note, notice how this blink function is different from the typical Arduino
blink implementation due to the single call to the HAL _GPIO_TogglePin() function.

Below is the actual section on this function as lifted from the HAL user manual.

HAL_GPIO_TogglePin

Function name void HAL_GPIO_TogglePIn
(GPIO_TypeDef * GPIOxX, uint16_t
GPIO_Pin)

Function description Toggles the specified GPIO pins.

Parameters [GPIOx: Where x can be (A..K) to select

the GPIO peripheral for STM32F429X
device or x can be (A..l) to select the
GPIO peripheral for STM32F40XX and
STM32F427X devices.

0 GPIO_Pin: Specifies the pins to be
toggled.

Return values [J None:

https://www.st.com/resource/en/user_manual/dm00154093-description-of-stm32f1-hal-and-lowlayer-drivers-stmicroelectronics.pdf

Scanning through this section of the HAL User Manual, there are many GPIO-
related functions, including this one, that are not available in the native
implementation of Arduino.

/Debug - May 1, 2020 5:18:48 AM

20K 55 %
B4KEB 5955 KB 445k8 fossx

Figure 10 — main.c

[workspace_1.3.0 - Blink/Care/Src/main.c - STM32CubelDE
Fie Edit Souwce Refactor Navigate

TR diw i

I, Project Explores £ =

Sewch Project Run Window Help

g B E @4 -0 %-® ¢~ HEE
O sinkioc

(B mainh (8] stm32flan_hal conth

w [Bink
4 Binaries
5 ncludes

= int main(voig

v @ Core
v i Ine
) main
R stmd2f o hal_confh
B stmidbocith
[
& Stertup
& Drivers
& Debug
0 Blink.ioc
W STM32FIICATX FLASHII

I e

[£] Probiems 11
Ditems

Description Resource. Path

H £ Type here to search

Lecation

Type

5 Build Analyzer 17 ==

Blink.elf - /Blink/Debug - May 1, 2020 5:18:48 AM

Memory Regicns Mernory Detsils
Region

Staoddress Endoddeess S

Ram 0x20000000 020005000 ke
LA Cx0BO00000 0x0810000 T
Writable

Sonart Insert

20:81: 1124

Figure 11 — main.c areas where the user can enter code

[workspace_1.3.0 - Blink/Care/Src/main.c - STM32CubelDE

Fie Edit Souwce Refactor Navigate Help
TRCEIN S EET GO QM S AE

O sinkioc

Sewch Project Fum Window

I, Project Explores £ = [6 menc 72 | mainh [stm32fiax hal_conth

[Blink [45 int main(vaid)
4 Binaries
5 ncludes

v B Core R CODE

iz ne
5 mainh
[stmd2x_hal_confh
[st

with s

kio
G STMIZFIOICETI FLASHI

et

6_Port, LED_Pin);

©J Consale &1
COT Budd Console (Blink]
1 %% Incremental Bulld of configuration Debug for project Blink **==
make 34 all
arm-none-eabi-size 8link.elf
data bax dec

hex #ilename
s ft 167¢ Blink.e1f
Finished building: default.size.stdout

17:53:34 Build Finished. @ ercors, © warnings. (tock 2s.781ms)

H P Type here to search

M Erme =

o Build Analyzer 3

Blink.alf - /Blink/Debug - May 1, 2020 6:59:09 AM
Memory Regions Memory Detais
Region Statoddss Endaddess S
- 0000 DOS0 20KE
s GO0 OO0 G4KE
Wrtable

Free
1845 kB
241 KB

Smart Insert

Figure 12 — Added code to while (1) main loop

Used
15568
45908

105:1: 2005

[Ty
Fox
[

a9
[e
E

Compiling and loading

To compile the code, simply go to the Project tab, and select Build All. Assuming
there are no compile errors move to the Debug folder and locate the .bin file.

As shown in figure 13, this is Blink.bin. This is the file that has to be loaded to the
actual STM32 MCU. The actual loader can be the STM32 ST-Link Utility.

VE-EE=E 5 Buid Analyame
Blink.elf - /Blink/Dabug - May 1, 2020 &:58:09 AM
Mamory z

Region Usage [%)

Figure 13 — Locating the .bin file

The actual process of loading a binary file into the STM3Bluepill is fully described
in many other places, so I'll just provide a summary.

Here are the steps:

1. Connect the following pins of ST-Link V2 to the STM32duino: 3.3V, SWDIO,
SWCLK and GND.

2. Set the STM32duino to DFU, Device Firmware Upgrade, mode by moving
the BOOT_O jumper to the 1 position.

3. Plugin the ST-Link V2 and start the utility. A screen looking somewhat like
figure 14 will appear.

4, Connect to the STM32duino, and then flash the code. Address of 0x800000
is fine as is.

To test, put the STM32duino back to user mode, and simply reset by depressing
the RESET pushbutton. The LED on the board should flash, indicating a successful
code download.

B8 sTM32 ST-LINK Utility - m| ®

File Edit View Target ST-LINK External Loader Help

ol BEPE BT

Memory disp) Device
Device ID
Addres] 008000000 Size 0x1258 Data Width: | 32 bits
| Revision ID
Flash size

Device Memory File : Blink. bin LiveUpdate
bevice Memory

Eo o T . DCDaG 11 Lo T e Thous o aone
20:46:47 : Device ID:0x410 ~
20:46:47 : Device flash Size : 128KBytes

20:46:47 : Device family :5TM32F 10xx Medium-density

20:47: 14 : Memory programmed in 05 and 453ms.

20:47:14 : Verification...OK

20:47:14 : Programmed memary Checksum: 0x0006957C

20:47:38 : Disconnected from device,

20:47:38 : Connection to device is lost: check power supply and debug connection,

20:47:38 : If the target s in low power mode, please enable "Debug in Low Power mode” option from Target-=settings menu.

Disconnected |Device D:— |Cc-re State : Mo Memory Loaded

Figure 14 — ST-Link utility screen

Conclusion

It has been a rather long and tedious process to get the STM32duino to simply
blink its LED. Obviously, for this particular task,

Although its not necessarily the best way to achieve a blinking LED, | hope this
example has illustrated how to set up and use the STM32CubelDE

Once you understand this process, you can use any STM32 MCU for any HW
design, with full access to its internal peripherals. This really opens up new

possibilities that are not typically offered by more restricted development
systems.

Written by Shawn Litingtun who is one of the experts available to help you with
your product inside the Hardware Academy.

PREDICTABLE

Where EIectronlcs and Entrepreneurshlp Intersect

https://thehardwareacademy.com/#experts
https://thehardwareacademy.com/
https://predictabledesigns.com/

