
How to
Turn Your
Arduino
Project into
a Sellable
Product

This guide is written by John Teel and brought to you in cooperation by:

Table of Contents
Introduction
Step #1 - Preliminary Design
Critical Components Selection
Common Microcontroller Peripherals
Notable Microcontroller Cores
Estimate the Manufacturing Cost
Step #2 - Design the Schematic Circuit
Review of Arduino Uno Schematic Diagram
What About Any Shields?
Step #3 - Design Printed Circuit Board (PCB)
Step #4 - Order PCB Prototypes
Step #5 - Develop the Firmware/Software
Step #6 - Test, Debug, and Repeat
Step #7 - Electrical Certifications
Conclusion

3
4
5
7
8
9
10
13
16
17
19
21
24
25
27

Introduction
Creating a prototype based on an Arduino is an
excellent start to bringing a new electronic hardware
product to market. The Arduino is an ideal platform for
proving your product concept.

However, there is still a lot of engineering work
required to turn it into a product that can be
manufactured and sold to the masses.

But why can’t you simply manufacture your product
with an Arduino inside? The good news is you can, but
most likely you shouldn’t.

There are two main reasons this is not usually a good
idea. First of all, the Arduino is large so for many
products embedding an Arduino will make the product
much too big to sell as a finished product.

Secondly, and most importantly, you won’t make any
money unless your product is really expensive with
high profit margins. Very few products have a retail
price high enough to justify using an Arduino for
production. But, if you are lucky enough to have such a
product then using an Arduino for production can be a
low cost way to get your product to market very quickly.

Arduinos may seem cheap when buying just one for
a DIY project, but they are very expensive once you
move on to high-volume production. You can design
your own microcontroller circuit to replace an Arduino
for only a few dollars, and that is the focus of this guide.

3

Preliminary Design
Step #1

Before you jump head first into spending big money
on full development I highly recommend you first look
at the big picture. This basically means you select all
the critical components, identify any development or
manufacturing risks, and estimate the cost to develop,
prototype, scale, and manufacture the product.

Most entrepreneurs make the grave mistake of
jumping right into spending big money (and/or tons
of time) on full development without any idea of the
costs, steps, and complexities that lie ahead. No big
tech company would ever do this. They always analyze
the big picture before spending the big money, and so
should you.

4

Critical Components Selection

The first step to design the electronics is to select all
of the critical components. This includes the various
microchips (i.e. integrated circuits), sensors, displays,
connectors, and other electronic devices needed
based upon the desired functions and target retail
price of your product.

Most products require a master microcontroller with
various components (displays, sensors, memory, etc.)
interfacing to the microcontroller via multiple serial
port protocols (I2C, SPI, UART, I2S, USB, etc.).

Should you select the microcontroller first or last?
I recommend that you begin by creating a detailed
system block diagram.

A system block diagram is invaluable for this early
planning. It can tell you how many input and output
(I/O) pins and serial communication ports are needed
for the project. Once you have that information then
you can select the best microcontroller.

I recommend searching for microcontrollers via an
electronics component distributor such as Newark.

This will allow you to narrow down your search to
only microcontrollers that are actively available. It also
allows you to quickly compare prices without limiting
your choices to any particular manufacturer.

One word of caution when selecting components.
Take the time to do your due diligence to ensure
that you won’t run into supply issues with any of
the components in the future. First of all, make sure
you only select components that are currently in
active production. Secondly, confirm that all critical
components are available from multiple distributors.
Finally, contact the component manufacturers to find
out the forecasted end-of-life, or use a paid service
such as SiliconExpert.

The most easiest strategy to transition from an Arduino
prototype to a sellable product is to use the same
microcontroller as the Arduino you used for your
project. Most Arduinos are based on simple 8-bit AVR
microcontrollers from Microchip.

Although there may be higher performance and lower
cost microcontrollers available, the simplest option is

5

http://www.newark.com
https://www.siliconexpert.com/

My specific preference is the STM32 line from ST
Microelectronics. The STM32 line is huge. It includes
everything from relatively simple microcontrollers
all the way up to powerful microcontrollers running
at hundreds of MHz. The upper echelons of the
STM32 line approach the performance of some
microprocessors.

to just use the same microcontroller as your Arduino.
There are two key reasons why using the same
microcontroller is the easiest option. First, the firmware
you’ve already developed is more easily ported over to
the manufacturable version of your product.

Secondly, Arduino is open-source hardware so for the
most part the circuit schematics can be simply copied
as-is, or at least serve as a reference starting point.

That being said, the easiest solution is rarely ever the
best solution. I almost never use 8-bit microcontrollers.
Instead my standard go-to microcontrollers are 32-bit
microcontrollers based on Arm Cortex-M processor
cores.

For example, there are 32-bit Arm microcontrollers
available for about half the price of the ATmega328.
Not only are they half the price but they include twice
the memory and several times the processing power.
In fact, there are 32-bit microcontrollers available for
under $1!

6

Common Microcontroller
Peripherals

In order to select the best microcontroller you need to
first understand the peripherals and features commonly
included with microcontrollers.

Memory: Most microcontrollers available today include built-
in FLASH and RAM memory. FLASH is non-volatile memory
used for program storage, and RAM is volatile memory used
for temporary storage. Some microcontrollers also include
EEPROM memory for permanently storing data, although usually
a separate EEPROM chip is required.

Digital General Purpose Input and Output (GPIO): These
are logic level pins used for input and output. Generally they
can sink or source up to a few tens of milliamps and can be
configured as open drain or push pull.

Analog input: Most microcontrollers have the ability to precisely
read an analog voltage. Analog signals are sampled by the
microcontroller via an Analog to Digital Converter (ADC).

Analog output: Analog signals can be generated by the
microcontroller via a Digital to Analog Converter (DAC) or a Pulse
Width Modulation (PWM) generator. Not all microcontrollers
include a DAC but they do offer PWM capabilities.

In Circuit Programming (ISP): ISP allows you to program a
microcontroller while it is installed in the application circuit,

instead of having to remove it for programming. The two most
common ISP protocols are JTAG and SWD.

Wireless: If your product needs wireless capabilities then there
are specialized microcontrollers available that offer Bluetooth,
WiFi, ZigBee, and other wireless standards.

Universal Asynchronous Receiver Transmitter (UART) is a serial
port that transmits digital words, typically of length 7 to 8 bits,
between a start bit and an optional parity bit and one or two stop
bits. A UART is commonly used along with other standards such
as RS-232 or RS-485.

UART is the oldest type of serial communication. UART is an
asynchronous protocol which means there is no clock signal.
Many microcontrollers also include a synchronous version of a
UART called a USART.

Serial Peripheral Interface (SPI): SPI is used for short distance
serial communication between microcontroller and peripherals.
SPI is a synchronous protocol which means it includes a clock
signal for timing. SPI is a 4 wire standard that includes data in,
data out, clock, and chip select signals.

Inter Integrated circuit (I2C): I2C also written as I2C is a 2-wire
serial bus used for communications between the microcontroller
and other chips on the board. Like SPI, I2C is also a synchronous
protocol.

However, unlike SPI, I2C uses a single line for both data in and
data out. Also instead of a chip select signal, I2C uses a unique
address for each peripheral. I2C has the advantage of only using
2 wires, but it’s slower than SPI.

7

Universal Serial Bus (USB) is a standard that is familiar to
most people. USB is one of the fastest serial communication
protocols. It is generally used for connecting up peripherals that
require large amounts of data transfer.

Controller Area Network (CAN) is a serial communication
standard developed specifically for use in automotive
applications.

8

Notable Microcontroller Cores

There are several microcontroller cores that have some
notoriety and are worth describing. Below are four of
the most common ones:

Arm Cortex-M
The 32-bit Arm Cortex-M series is one of the most commonly
used microcontroller cores used today. Arm doesn’t actually
make and sell microcontrollers, instead they license their
architecture to other chip makers.

Many companies offer Cortex-M microcontrollers including ST
Microelectronics, Freescale Semiconductor, Silicon Labs, Texas
Instruments, and Microchip.

Cortex-M series microcontrollers are my favorite choice for
products that will be brought to market. They are low cost,
powerful, and widely used. Cortex-M microcontrollers are the
most popular microcontroller in use for commercial products.

8051
The 8-bit 8051 microcontroller was developed by Intel way
back in 1980. It’s the oldest microcontroller core commonly still
used today. The 8051 is currently available in enhanced modern
versions sold by at least 8 different semiconductor manufactures.
For example, the popular Bluetooth Low-Energy chip from CSR
(CSR101x) uses an 8051 core.

AVR
The microcontroller line known as AVR from Microchip (originally
from Atmel) is best known for being the brains in most versions
of the Arduino. So for many makers it’s an easy transition from
an Arduino to an AVR microcontroller. However, I’ve found that
you can usually get one of the other cores with similar, or better,
performance for several dollars cheaper.

The large majority of Arduino models are based on an AVR
8-bit microcontroller (see Table 1 below). The exceptions are
the Arduino Due, Zero, MKR1000, and MKRZero all of which are
based on 32-bit Arm Cortex-M architecture microcontrollers.

PIC
PIC is another family of microcontrollers from Microchip.
They are very popular and come in a wide array of options.
The PIC microcontroller line includes 8-bit, 16-bit and 32-bit
versions. The number of pins, package styles, and selection of
on chip peripherals are offered in an almost endless array of
combinations.

http://www.arm.com
https://www.microchip.com/

Estimate the
Manufacturing Cost

I highly recommend that you estimate the production
cost for your product before you design the full
schematic. Most entrepreneurs and developers skip
this step and proceed right to the schematic design.
That’s a mistake!

It’s critical to know as soon as possible how much it
will cost to manufacture your product. You need this
number in order to determine the best sales price,
the cost of inventory, and most importantly how much
profit you can make.

Once you’ve selected all of the major components
then you should have enough information to
accurately estimate the production cost for your
product (Cost of Goods Sold – COGS).

Don’t make profit an afterthought. Does Apple start
developing a new product before knowing how much
profit they can make? Of course not, and neither
should you.

The total COGS consists of much more than just the
electronic component costs. For more information
see my article that describes in great detail the
manufacturing cost for a new electronic hardware
product.

9

https://predictabledesigns.com/the-cost-to-develop-scale-and-manufacture-a-new-electronic-hardware-product/

Design the Schematic Circuit
Step #2

For the rest of this introductory guide we’ll be focusing
primarily on 8-bit AVR microcontrollers since that is the
easiest transition from an Arduino.

10

Finally, DIP packages tend to be more expensive since
they are not generally used in high volume production.
For example, the ATmega328 costs $1.66 @ 100 pieces
in a DIP package, but only $1.18 for a much smaller SMT
package.

The ATmega328 used in the Uno is a through-hole
DIP (Dual-Inline Package) version in a socket. Use of a
socket allows the microcontroller to be easily swapped
out if it becomes damaged. A socketed microcontroller
may be a good idea for a development kit, but not for a
production product.

First of all, a DIP package is going to be significantly
larger than a SMT (Surface-Mount-Technology) package,
especially with the added size of a socket. Secondly,
your PCB assembly costs will be lower if you avoid
through-hole packages entirely.

11

Figure 1 - Arduino Uno uses an ATmega328
microcontroller with 32kB of Flash memory

12

Name

101

Gemma

LilyPad

LilyPad
SimpleSnap

LilyPad USB

Mega 2560

Micro

MKR1000

Pro

Pro Mini

Uno

Zero

Due

Operating/Input
Voltage

3.3 V / 7-12 V

3.3 V / 4-16 V

2.7-5.5 V / 2.7-5.5 V

2.7-5.5 V / 2.7-5.5 V

3.3 V / 3.8-5 V

5 V / 7-12 V

5 V / 7-12 V

3.3 V / 5 V

3.3 V / 3.35-12 V
5 V / 5-12 V

3.3 V / 3.35-12 V
5 V / 5-12 V

5 V / 7-12 V

3.3 V / 7-12 V

3.3 V / 7-12 V

Analog
In/Out

6/0

1/0

6/0

4/0

4/0

16/0

12/0

7/1

6/0

6/0

6/0

6/1

12/2

EEPROM
[kB]

-

0.5

0.512

1

1

4

1

-

0.512
1

1

1

-

-

Flash
[kB]

196

8

16

32

32

256

32

256

16
32

32

32

256

512

Processor

Intel® Curie

ATtiny85

ATmega168V
ATmega328P

ATmega328P

ATmega32U4

ATmega2560

Atmega32U4

SAMD21
Cortex-M0+

ATmega168
ATmega328P

ATmega328P

ATmega328P

ATSAMD21G18

ATSAM3X8E

CPU
Speed

32 MHz

8 MHz

8 MHz

8 MHz

8 MHz

16 MHz

16 MHz

48 MHz

8 MHz
16 MHz

8 MHz
16 MHz

16 MHz

48 MHz

84 MHz

Digital IO/
PWM

14/4

3/2

14/6

9/4

9/4

54/15

20/7

8/4

14/6

14/6

14/6

14/10

54/12

SRAM
[kB]

24

0.5

1

2

2.5

8

2.5

32

1
2

2

2

32

96

USB

Regular

Micro

-

-

Micro

Regular

Micro

Micro

-

-

Regular

2 Micro

2 Micro

UART

-

0

-

-

-

4

1

1

1

1

1

2

4

Table 1 - The microcontrollers used in the various models of Arduino.

https://www.arduino.cc/en/Products/Compare

One of the great things about the Arduino is that it’s an
open-source platform. This means that you can easily
view both the schematic and PCB layout for any of the
Arduinos. Let’s take a look at the schematic diagram for
the Uno.

First of all, you’ll see there are two primary integrated
chips: U3 and U4. U4 is an ATmega328P microcontroller,
and U3 is an ATmega16U2 microcontroller. Wait a
second, why are there two microcontrollers?

13

Review of Arduino Uno
Schematic Diagram

The ATmega328P (U4) is the primary microcontroller.
The second microcontroller (U3 - ATmega16U2) is solely
there to provide a USB to UART conversion function
since the ATmega328P doesn’t include a built-in USB
port for programming. Older Arduinos instead used
a specialized USB-to-UART chip from FTDI called the
FT232RL.

By changing the FTDI chip to the ATmega16U2 it not
only lowers the cost of the Arduino, but it also allows
advanced users to use the USB port for other types
of devices such as a keyboard or mouse. In general,
a microcontroller based solution will provide more
flexibility than a specialized solution like the FTDI chip.

Unlike an Arduino, with a custom microcontroller circuit
you no longer need a USB port for programming
purposes (I discuss this in more detail later). So, if your
product doesn’t require a USB communication for other
purposes (USB charging is different), then you don’t
need U3.

If you do require a USB port for your product then
I would instead suggest you use a microcontroller
that includes an embedded USB port, such as the
ATmega32U4 microcontroller used on the Arduino
Leonardo.

Figure 2 - Marked up schematic diagram for an Arduino Uno.

https://www.arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-schematic.pdf
https://www.arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-schematic.pdf
http://www.microchip.com/wwwproducts/en/ATmega16u2
http://www.ftdichip.com/Products/ICs/FT232R.htm
http://www.microchip.com/wwwproducts/en/ATmega32u4
https://store.arduino.cc/usa/arduino-leonardo-with-headers
https://store.arduino.cc/usa/arduino-leonardo-with-headers

That being said, the ATmega32U4 is quite pricey
at around $3.47 @ 100 pieces. Whereas, ST
Microelectronics offers an Arm Cortex-M 32-bit
microcontroller with USB functionality for only $1.92 @
100 pieces.

14

Figure 3 - Arduino Leonardo uses an ATmega32U4 microcontroller
with a built-in USB port

Each of the two microcontroller circuits in the Uno
consists of a crystal oscillator running at 16 MHz, various
GPIO (General Purpose Input/Output) signals, multiple
serial interfaces including one for programming, a
power supply, and lots of decoupling capacitors.

Support Circuitry

U5 is a dual op-amp (operational amplifier) called the
LMV358IDGKR from Texas Instruments. One of the two
op-amps (U5A) is operated as a comparator since it has
no feedback. This comparator is used to determine if
the Arduino is being powered by the DC input or via the
USB port.

If the 6-20V DC input voltage is present then the 5V
supply is generated by an on-board linear regulator (as I
discuss in detail shortly). On the other hand, if the 6-20V
DC input is not present then the 5V supply voltage
comes from the USB port.

So, if there is a 6-20V DC input voltage supplied then
the positive input of the U5A comparator is higher than
the negative input (3.3VDC). In this case the output of
the comparator will be high, and PMOS transistor T1 will
be turned off. This disconnects the internal 5V signal
from the USB supply voltage.

If the 6-20V DC input is not present then the output of
U5A will be low which turns on T1, thus the internal 5V
supply comes from the USB port.

The other op-amp in U5 (U5B) is connected in a
configuration known as a unity-gain feedback amplifier.
This is a fancy way of saying that it has a gain of 1 which
means it acts as a simple buffer.

http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus.html?querycriteria=productId=SC1169
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus.html?querycriteria=productId=SC1169

Whatever voltage you put on the input of U5B is what
you get on the output. The purpose is that now the
output is able to drive a much larger load. In this case,
this buffer is there simply to flash an LED whenever the
serial programming clock (SCK) signal is present.

15

The power circuit for the Uno is based on an NCP1117
linear regulator from ON Semiconductor. This regulator
generates a 5V DC voltage from the 6-20V DC input
voltage and can source up to 1A of current.

The use of a linear regulator in this situation is fine for
some products, but not if your product is powered
from a battery, or consumes large amounts of current.
A linear regulator such as the NCP1117 is extremely
inefficient when the input voltage is significantly higher
than the output voltage. Being inefficient means it
wastes a lot of the power by dissipating heat.

For example, on the Uno the input voltage can be as
high as 20V, and the output voltage is only 5V. This
means the input-output differential voltage is 15V. If you
pull the maximum current of 1A from this regulator the
power dissipated by the linear regulator would be (Vin
– Vout) * Iout = (20V – 5V) * 1A = 15W!

Power Circuit

If the NCP1117 didn’t have an internal thermal shutdown
feature, it would literally cook while trying to dissipate
this much power. Regardless, you will waste all of this
power as heat.

If you need to step-down a high voltage to a
significantly lower voltage then a switching regulator
is a much better choice. I won’t get into the details of
switching regulators in this article, but they are many
times more efficient than linear regulators. However,
switching regulators are also considerably more
complex than linear regulators.

On the Uno a LP2985 linear regulator from Texas
Instruments is used to create a 3.3V voltage. The
LP2985 is rated for 150mA of load current. This type
of linear regulator is also called a Low-Drop-Out (LDO)
regulator because it requires very little differential
voltage from the input to the output.

Older, non-LDO linear regulators required the input
voltage to be a few volts above the output voltage.
However, from a power dissipation standpoint it’s best
to operate a linear regulator with an input voltage close
to the output voltage.

The 3.3V voltage is fed into a comparator (U5A) that
is used to switch to USB power, if available, when no

https://www.onsemi.com/pub/Collateral/NCP1117-D.PDF
http://predictabledesigns.com/linear-and-switching-voltage-regulators-introduction/
http://www.ti.com/product/LP2985-N

power supply is plugged in.

The LP2985 doesn’t dissipate that much power so a
linear regulator is a good choice for this regulator. This
is because the input-output voltage differential is only
5V – 3.3V = 1.7V, and the maximum current is only
150mA.

A very common strategy is to use a switching step-
down regulator (also called a buck regulator) followed
by a linear regulator. In addition to the increased
complexity, the other downside of a switching regulator
is it provides a “noisy” output voltage.

This is fine for many applications. However, if you
require a cleaner supply voltage it’s best to add a
linear regulator to clean up the output voltage from the
switching regulator.

16

You are probably also using some shields that will
also need to be converted to a custom schematic.
Depending on the complexity of the function provided

What About Any Shields?

by the shield you’ll either want to replace it with a
custom circuit or a module solution.
If the shield is providing wireless functionality then in
most cases you are better off using a surface-mounted
module which will solder directly on the main PCB.

There are two reasons for using a module for wireless
functions. First, the PCB for a wireless radio can be
quite complex to lay out correctly. Secondly, the use of
pre-certified modules will simplify the process of getting
your product certified.

Note that many wireless solutions (whether a module
or a chip) include an embedded microcontroller that
can also serve as the master microcontroller for your
product. In such as case there is no need for a separate
microcontroller unless your product requires a more
advanced microcontroller than embedded in the
wireless module/chip.

For less complex functions like sensors, relays, and
motor controllers it’s usually best to implement them as
a custom circuit on your own PCB.

http://predictabledesigns.com/linear-and-switching-voltage-regulators-introduction/
http://predictabledesigns.com/linear-and-switching-voltage-regulators-introduction/
http://predictabledesigns.com/understanding-certifications-for-electronic-hardware-products/

Design Printed Circuit Board (PCB)
Step #3

Now that the schematic design is complete, it’s time
to turn it into Printed Circuit Board (PCB). A schematic
is simply an abstract technical diagram, but a PCB is
how you turn your design into a real-world product.

Since the Arduino is open-source hardware the PCB
layout design is available for reference. However, you
will almost surely need to redesign the PCB for your
specific product size requirements.

17

Secondly, carefully lay out any decoupling capacitors
so they are as close as possible to the pin that is being
decoupled. Be sure to always review the microcontroller
datasheet for PCB layout guidelines.

Some general PCB layout tips include avoiding 90
degree bends in signal traces and making sure any
traces carrying significant current are sized properly. If
leadless packages are used be sure to also include test
points for debug purposes.

A microcontroller circuit with a clock speed of only 16
MHz, without wireless functionality, is a fairly simple
PCB layout to design (assuming you know how to do
PCB layout). Things become much more complicated
once speeds approach hundreds of MHz, or especially
GHz.

Be cautious about two things when laying out an
Arduino Uno equivalent microcontroller circuit. First,
the crystal and it’s two load capacitors need to be laid
out correctly and placed as close as possible to the
microcontroller pins.

18

Figure 4 - PCB layout for the Arduino Uno

http://predictabledesigns.com/pcb-design-top-5-mistakes-on-printed-circuit-boards-layout/

Order PCB Prototypes
Step #4

Once the PCB layout is completed it’s now time to
order the boards. However, before ordering any PCB
prototypes you should really get an independent
design review of the schematic and PCB layout.

19

Once you’ve tested and debugged the first version,
then increase the quantity for the second order
depending on your confidence level that all major issues
have been fixed.

Regardless of the designer’s experience level, an
independent design review reduces the likelihood that
mistakes will make their way into your prototype.

Once you are finally ready to order boards you will
need to generate Gerber files for the PCB layout. There
are countless PCB design software packages and each
has its own proprietary file format. Gerber files, on the
other hand, are an industry standard supported by all
PCB design tools. Gerber files will be used to prototype
your boards as well as for production.

In some cases you may have two different vendors
make your boards. One vendor will produce the
blank PCB’s, and then another supplier will solder the
components onto the board.

In other cases, a single vendor will perform both steps.
For example, Seeed Studio’s Fusion service can supply
you with completely assembled boards at an incredibly
affordable cost.

For your first prototype version I suggest ordering only
3-10 boards. This is because the first version will likely
have various bugs that will need to be fixed. In most
cases it’s a waste of money to order a large quantity on
the first version.

20

https://www.seeedstudio.com/fusion.html

Develop the Firmware/Software
Step #5

As I eluded to earlier, one aspect of an Arduino that is
different than a custom microcontroller circuit is how
the programming is done. An Arduino is programmed
via a USB port. This allows it to be programmed from
any computer without the need for special hardware.

21

so be sure the one you purchase works with your
microcontroller.

This special programming hardware isn’t required for
an Arduino since it is essentially already embedded
in the Arduino. As already discussed, the Arduino
Uno incorporates a USB-to-UART converter to allow
programming via a standard USB port.

On the other hand, a custom microcontroller is usually
programmed via a serial port protocol such as SPI, SWD,
UART, or JTAG. In order to program a microcontroller
using one of these serial programming protocols you’ll
need a special piece of hardware called an In-Circuit
Serial Programmer (ICSP) or In-System Programmer
(ISP).

You’ll also sometimes see “programmer” substituted
with “debugger” since this hardware device also allows
you to see the inner workings of the microcontroller for
debugging purposes.

These devices are called In-Circuit or In-System
programmers/debuggers because the microcontroller
can be programmed directly in the system without any
need to remove the microcontroller.

The old method of programming required the
microcontroller be removed from the circuit for
programming, then re-inserted back into the circuit.
This is a very inefficient method of programming a
microcontroller during development.

The AVRISP is an example of an in-system programmer
for the AVR line of microcontrollers. Unfortunately, most
microcontrollers require their own custom programmer

22

Figure 5 - The AVRISP mkII In-System Programmer (ISP)
.

Once you have the necessary programming hardware
it’s time to port over your Arduino sketch to native
firmware code.
Just as with a custom microcontroller, an Arduino
is programmed using the C language. However,
programming is greatly simplified on the Arduino since
it already contains a huge library of various functions.

For example, to setup a GPIO pin as an output on an
Arduino, and then output a low logic level, you would
use the following two functions:

When you execute these two functions, the real work is
performed by the library code behind these functions.
For a custom microcontroller circuit the library code for
these two functions must also be ported over to your
microcontroller code (this will covered in more detail in
a future article).

Finally, remember that you don’t have to use the exact
same microcontroller as your Arduino to simplify

23

pinMode(PinNumber, OUTPUT);

digitalWrite(PinNumber, LOW);

programming. Selecting a microcontroller from the same
line of microcontrollers will still significantly simplify the
transition from Arduino to production.

For example, porting your Arduino code over to any
8-bit AVR microcontroller will be considerably less
complex than porting it over to a 32-bit microcontroller.

Test, Debug, and Repeat
Step #6

It doesn’t really matter how good you are at designing
circuits. Unless your product is exceptionally simple,
you are almost guaranteed to make at least one or two
mistakes in your design, and likely many more.

So be sure to account for this fact in your forecast
planning. That being said, accurately forecasting
debug time is extremely challenging since you are

inherently dealing with unknown and unexpected
problems. This step almost always consists of both
hardware and firmware debug.

24

Electrical Certifications
Step #7

In order to sell a new electronic product in most
countries there are several types of certification
required. The exact certifications needed depend on
the country/region where the product will be sold.

I’ll warn you that obtaining certifications isn’t cheap
and most products will cost at least several thousand
dollars to certify. Below is a quick overview of the
certifications required in the USA, Canada, and Europe.

25

RoHS (Restriction of Hazardous Substances) certification
is required for electrical products sold in the European
Union (EU). It certifies the electronics are free of lead.

FCC certification is required for all electrical products
sold in the USA. Products that don’t purposefully radiate
electromagnetic energy (i.e. no wireless functions) are
classified as non-radiators.

On the other hand, wireless products purposefully
transmit electromagnetic energy and are classified
as intentional radiators. It is much more expensive
to obtain FCC certification for an intentional radiator.
Fortunately, there are ways to reduce this cost such as
by using pre-certified wireless modules.

UL (Underwriters Laboratories) or CSA (Canadian
Standards Association) certification is required for any
electrical sold in the USA and/or Canada that plugs into
an AC electrical outlet.

Products running on only batteries with no recharging
capabilities do not require UL/CSA certification.
However, many retail chains and/or product liability
insurance companies will require UL/CSA certification
for any electronic product.

CE (Conformité Européene) certification is required for
products sold in the European Union (EU). It is similar to
the FCC and UL certifications required in the USA.

26

http://www.rohsguide.com/
https://www.fcc.gov/general/equipment-authorization-procedures
http://predictabledesigns.com/how-to-save-money-and-reduce-risk-developing-your-new-electronic-product/?utm_source=Makezine&utm_campaign=Part1
https://en.wikipedia.org/wiki/UL_(safety_organization)
http://www.csagroup.org/
http://ec.europa.eu/growth/single-market/ce-marking/index_en.htm

Conclusion
In this article we’ve looked at the simplest example
of migrating from an Arduino prototype to a
manufacturable product. However, the simplest method
is rarely the best method.

The AVR microcontrollers used in most Arduino kits
are a great choice for learning about microcontrollers,
but they are not necessarily the best choice in a
production product. The 32-bit Arm Cortex-M line
of microcontrollers are the most common choice for
production. They are powerful, low-cost and widely
available from multiple chip makers.

Getting your product to the point of having a
production quality prototype is a huge accomplishment.
However, there is still considerable work required to
scale a product from a prototype to mass producing
thousands or millions of units.

Before you jump into developing your product you
should first look at the big picture. Doing so will give
you insight into all of the steps and costs that lie ahead
in your path to market domination.

27

